Wen Zhang, Ph.D., P.E., BCEE

Principal Investigator
Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

马清泉:新泽西理工学院土木与环境工程系博士后。2022年12月博士毕业于新泽西理工学院,2019年1月和2016年6月于北航获得硕士和学士学位。主要研究方向为纳米材料界面的表征和DFT理论计算,电催化膜的应用,机器学习等。Qingquan Ma is a Postdoc in Environmental Engineering at NJIT. He received his Ph.D. degree at NJIT in Dec. 2022. He received his B.S. in 2016 and M.S. in 2019 from Beihang University. 

Electrosorption, Desorption and Oxidation of Perfluoroalkyl Carboxylic Acids PFCAs) via MXene-based Electrocatalytic Membranes

 
Dr. Wen Zhang’s group in New Jersey Institute of Technology combined experimental and DFT approaches providing important and complementary information about surface terminations’ impact on MXene for PFCAs remediation. MXenes exhibit excellent conductivity, tunable surface chemistry and high surface area. Particularly, surface reactivity of MXenes strongly depends on surface exposed atoms or terminated groups. This study examines three types of MXenes with oxygen, fluorine and chlorine as the respective terminal atoms and evaluates their electrosorption, desorption and oxidative properties. Two perfluorocarboxylic acids (PFCAs), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), are used as model persistent micropollutants for the tests. The experimental results reveal that O−terminated MXene achieves a significantly higher adsorption capacity (215.9 mg·g−1) and an oxidation rate constant (3.9×10−2 min−1) for PFOA compared to those with the F and Cl terminations. Electrochemical oxidation of the two PFCAs (1 ppm) with an applied +6 V potential in the 0.1 M Na2SO4 solution yield >99 % removal in 3 hours. Moreover, PFOA degrades about 20% faster than PFBA does on O−terminated MXene. The density functional theory (DFT) calculations reveal the O−terminated MXene surface yielded the highest PFOA and PFBA adsorption energy and a most favorable degradation pathway, suggesting the high potential of MXenes as highly reactive and adsorptive electrocatalyst for environmental remediation. This study is supported by the NSF foundation (Award number: 1756444), the NSF INTERN grant (Award number: 1836036) and NJIT-BGU grant. 

Mr. Ma’s research focuses on the synthesis and characterization of facet-dependent nano-catalysis, electrocatalysis, density functional theory (DFT) and multidisciplinary research in material characterization and electrochemical membrane processes.

     标题:MXene电催化膜对全氟烷基羧酸(PFCAs)的电吸附、电解吸和电氧化

 

第一作者:马清泉

通讯作者:张文

通讯单位:新泽西理工学院

DOI: https://doi.org/10.1021/acsami.3c03991

 

文章摘要

新泽西理工学院土木与环境工程系张文教授课题组近期于ACS Applied Materials & Interfaces发表研究论文。文章结合实验和理论计算方法, 合成了不同表面元素修饰的MXene,并详细研究了其对两种不同链长PFCAs (PFBA和PFOA) 电吸附、电解吸和电氧化的影响并应用密度泛函理论( DFT )对机理进行了阐述。MXenes是一种具有优异导电性、可修饰,可调控的表面和高比表面积的新型二维材料。特别是MXenes的催化反应活性很大程度上取决于表面修饰的原子或者官能团。研究考察了三种不同表面原子(氧、氟和氯)的MXenes,并评估了它们的电吸附、电解析附和电氧化性能。实验结果显示,表面为氧元素的MXene对全氟辛酸的吸附能力和氧化速率常数明显高于表面为氟和氯元素的MXene。具体而言,氧元素表面的MXene对全氟辛酸的吸附能力达到215.9 mg g-1,氧化速率常数为3.9×10-2 min-1。在0.1 M的Na2SO4溶液中,施加电压为+6V的情况下,两种全氟辛酸(1ppm)3小时内的电化学氧化去除率超过99%。并且PFOA在表面为氧元素MXene上的降解速度比PFBA快约20%。密度泛函理论(DFT)计算进一步支持了实验结果,表面为氧元素的MXene对PFOA和PFBA具有最高的吸附能量和最有利的降解途径,这表明MXenes作为高活性和吸附性电催化剂在环境修复方面有很大的潜力。这项研究得到了美国国家自然科学基金会基金会CBET基金(1756444), 美国国家自然科学基金会INTERN基金(1836036)和内盖夫本古里安大学和新泽西理工学院教授联基金(IU-FSG)的支持。

Explore the Nano World 

 Wen's Research Group​