Zhang’s group investigates an electromagnetic catalysis system which can improve degradation of algogenic dor using Fe3O4 nanoparticles with tannin coating. The electromagnetic field (EMF) could effectively penetrate those non-polar or non-metallic reaction medium or reactor materials and selectively energize catalysts such as magnetic nanoparticles. This study evaluated an electromagnetic catalysis process that involves the use of the EMF to catalyze surface reactions on Fe3O4 nanoparticles with/without tannin coating (Fe3O4@tannin). The EMF field distribution from different induction coil types and heating of the solution or catalyst were characterized. The effects of coil type, exposure time, and catalyst type on the removal rates were then evaluated and optimized with methylene blue. Further, the removal mechanisms of 2-MIB and geosmin were analyzed with different combinations of solution heating and additions of H2O2, EMF, and Fe3O4@tannin. The highest removal (97% and 98%) for 2-MIB and geosmin was obtained when Fe3O4@tannin nanoparticles were exposed to H2O2 and EMF, which resulted in a potential Fenton-like reaction based on radical detection. The findings support the water treatment innovations with nontraditional catalysis processes.
Paper Link: https://pubs.acs.org/doi/10.1021/acsestengg.1c00191